Last time, we wrote

$$\frac{n(0,t) = F(N(t-z))}{birth - atc}$$
the delay

$$F(N) is a monotone decreasing tinction of N.$$
F is related to the secretion rate of growth
inducer (e.g. ery thropoietin for red bloud cells)
in response to population.
Suppose we have some mitch condition

$$n(X, 0) = n_0(X).$$
So, the system is

$$\begin{cases} \frac{\partial n}{\partial t} + \frac{\partial n}{\partial x} = -ain \\ n(0, t) = F(N(t-z)) & where N(t) = \int_0^X n(X, t) dX \\ n(X, 0) = n_0(X). \end{cases}$$

Steady state calculation

Set
$$\frac{\partial n}{\partial t} = 0$$

 $\Rightarrow \frac{\partial n}{\partial x} = -mn \Rightarrow \begin{cases} n(0)e^{-mx}, & \chi < \chi \\ 0, & \chi \ge \chi \end{cases}$

Let
$$N_{0} = \int_{0}^{X} n(x) dx = htal population at steady
= $\frac{n(0)}{m} (1 - e^{-mX})$
At steady state, we also have
 $F(N_{0}) = n(0) \leftarrow$
So, $F(N_{0}) = \frac{mN_{0}}{1 - e^{-mX}}$
decreasing $\int_{0}^{1} [ineer and increasing with respect}$
 $h N_{0}$$$

Since F(No) is decreasing and the RH) is increasing, the equichin has a unique solution.

Q: Is the steady state stable or unstable

Tuesday, August 08, 2017 10:24 AM

N

Integrate the original PDE:

$$\int_{0}^{X} \left(\frac{\partial n}{\partial t} + \frac{\partial n}{\partial x} \right) dx = \int_{0}^{X} -un dx$$

$$\Rightarrow \frac{\partial}{\partial t} \int_{0}^{X} n dx + n (X, t) - n (0, t) = -u N$$

To analyse stability, linearise around the steady state
by looking for solutions of the form
$$N(t) = N_0(1 + \epsilon e^{\lambda t})$$
 for $\epsilon <<1$.

(Assume
$$N_0 > 0$$
 to be biologically relevant and interesting.)
Substituting the expression into the DDE and ignaring
terms of $O(\varepsilon^2)$, we get
 $\lambda + F'(N_0)e^{-\lambda(z+X)}e^{-mX} - F'(N_0)e^{-\lambda z} = -m$
comes from Acylor expansion ath
 $F(N_0(1+\varepsilon e^{\lambda(\varepsilon-z-X)}))$

$$= \frac{F'(N_{0})e^{-\lambda \tau}}{\lambda + m} = 1$$

It is hand (nearly impossible) to solve be eigenvalues explicitly, so we do it numerically. For simplicity, consider the cose M=0 (i.e., no death until age R = X).